
© 2024, IRJEdT Volume: 06 Issue: 12 | Dec-2024 Page 1246

International Research Journal of Education and Technology

Peer Reviewed Journal

ISSN 2581-7795

TRAFFIC SIGNS RECOGNITION USING CNN AND KERAS IN

PYTHON

BIJU J, NITHISH K P, MANOBALAN M, KIRANN KRISHNA R, ADHARSH S

1Faculty, Dept. of Information Science and Engineering, Bannari Amman Institute of Technology, IN
2Studuent, Dept. of Information Technology, Bannari Amman Institute of Technology, IN
3Studuent, Dept. of Information Technology, Bannari Amman Institute of Technology, IN
4Studuent, Dept. of Information Technology, Bannari Amman Institute of Technology, IN
5Studuent, Dept. of Information Technology, Bannari Amman Institute of Technology, IN

Abstract—

Traffic sign recognition is an important component
of self-driving systems because it helps vehicles
accurately perceive and respond to traffic signs. We
show in this study a system for reading traffic signs
that uses Convolutional Neural Networks (CNNs) and
the Keras framework in Python. The proposed
algorithm uses a collection of traffic signs to
recognize and classify them in real time with high
accuracy. Our method uses deep learning to
accomplish reliable recognition under a variety of
situations, including lighting, rotation, and occlusion.
The system is examined using the German Traffic Sign
Recognition Benchmark (GTSRB), and it performs
comparably to cutting-edge approaches. We also go
over the model architecture, training procedure, and
potential enhancements for use in real-world
applications.

Keywords: Traffic sign recognition, CNN, Keras, deep

learning, autonomous driving, Python, GTSRB, image

classification.

1. INTRODUCTION

Traffic sign recognition is an important problem for

self-driving cars and advanced driver assistance systems

(ADAS), as it provides crucial information for safe

navigation. This project seeks to create a comprehensive

traffic sign identification system utilizing Convolutional

Neural Networks (CNNs) and the Python-based Keras deep

learning toolkit. CNNs are extremely useful for image

classification jobs since they automatically extract

hierarchical features from raw pixel data, making them ideal

for visual recognition applications such as traffic sign

categorization.

The algorithm we created is trained using the

German Traffic Sign Recognition Benchmark (GTSRB), a

commonly used dataset that contains over 50,000 photos of

traffic signs classified into 43 categories. The dataset

contains real-world problems such as shifting lighting

conditions, occlusions, rotations, and scaling, making it an

excellent testbed for assessing the performance of our CNN-

based model.

Our method employs a deep CNN architecture made up of

numerous convolutional layers, max-pooling layers, and

fully connected layers that are tuned by backpropagation

with stochastic gradient descent (SGD). The convolutional

layers work as feature extractors, capturing spatial patterns

in input images, whereas the pooling layers minimize spatial

dimensions and processing, making the model more

resistant to minor distortions or translations. Batch

normalization and dropout are used to prevent overfitting

and improve model generalization to previously unknown

data.

To build the system, we used Keras, a high-level neural

network API built on top of TensorFlow that makes it easier

to create and train deep learning models. The model was

trained with categorical cross-entropy as the loss function

and softmax activation in the output layer to predict the

probability of each traffic sign class. To optimize the

model's performance, hyperparameters such as learning rate,

batch size, and epoch count were modified.

This project illustrates the usefulness of deep CNNs for

traffic sign identification and proposes a replicable

framework for Keras in Python. The final model achieves

excellent classification accuracy on the GTSRB test set,

making it appropriate for use in real-time autonomous

systems. Future enhancements could include the addition of

real-time object detection frameworks to increase the system

responsiveness.

https://www.irjweb.com/current_issue.php

© 2024, IRJEdT Volume: 06 Issue: 12 | Dec-2024 Page 1247

International Research Journal of Education and Technology

Peer Reviewed Journal

ISSN 2581-7795

2. RELATED WORKS

Traffic Sign Recognition (TSR) has been an active research

area in the computer vision domain for several decades.

Early approaches to TSR typically relied on traditional

machine learning techniques such as Support Vector

Machines (SVMs) and k-Nearest Neighbors (k-NN),

treating TSR as a classic pattern recognition problem.

Notable work in this space includes using SVMs with

Histogram of Oriented Gradients (HOG) features to achieve

competitive results on datasets like the German Traffic Sign

Recognition Benchmark (GTSRB). Other methods,

including as AdaBoost and Random Forests, have been used

to improve TSR by integrating weak classifiers into robust

models. For example, in, a boosting strategy was employed

in conjunction with SimBoost to improve recognition

accuracy, whereas in, the ensemble-based Error-Correcting

Output Code (ECOC) framework was investigated,

employing optimal tree architectures for efficient traffic sign

categorization.

The key challenge in TSR has always been feature

extraction. Handcrafted features such as HOG, Scale-

Invariant Feature Transform (SIFT), and Speeded-Up

Robust Features (SURF) are commonly utilized to represent

traffic signs. However, with the advent of deep learning,

Convolutional Neural Networks (CNNs) have emerged as

the preferred approach due to their superior capacity to

automatically learn and extract hierarchical features from

raw image data. Several CNN changes have been proposed

in recent studies to improve TSR recognition accuracy.

Multi-column CNNs, committee CNNs, and multi-scale

CNNs have all performed exceptionally well in traffic sign

recognition tasks, particularly on the GTSRB dataset. These

models have demonstrated to outperform typical machine

learning techniques by learning robust characteristics that

are invariant of noise, illumination, rotation, and scale

changes in traffic signs.

A. Understanding of Convolutional Neural Network

Convolutional Neural Networks (CNNs) are meant to

capture spatial hierarchy in images using layers of

convolution, pooling, and activation. CNNs have grown in

prominence in TSR due to their capacity to train

discriminative features automatically, eliminating the need

for laborious feature engineering. Architectures like as

AlexNet, VGGNet, and ResNet have been customized and

optimized for TSR use. The adoption of deeper networks,

along with batch normalization and dropout, has helped to

overcome the vanishing gradient problem and prevent

overfitting during training. However, while CNNs have

exhibited incredible accuracy, comprehending their internal

workings remains difficult. The black-box nature of CNNs

has prompted academics to study how these models learn

and represent characteristics at various layers.

Several attempts have been made to visualize and interpret

CNN characteristics. Part Detector Discovery (PDD) and

gradient-based visualizations, for example, have been

presented as ways for analyzing how CNNs focus on

different regions of input images. Deconvolutional

Networks (DeconvNets) have been developed to reveal

which features are active in response to various input

patterns. This investigation of CNNs not only broadens our

understanding of their functions, but it also aid in increasing

their performance by fine-tuning architecture and training

methods.

In this paper, we improve on previous advances in CNN-

based TSR by adopting a deep CNN architecture and the

Python Keras package. Our goal is to improve recognition

accuracy while decreasing computing overhead, so that the

system may be used in real-time applications.

3. MODEL ARCHITECTURE

In this paper, we created a deep Convolutional Neural

Network (CNN) for traffic sign recognition that can

efficiently manage variations in shape, color, and scale. The

architecture is built on the Keras framework, with

TensorFlow serving as the backend, and it is tuned for

excellent accuracy and real-time performance. A full

analysis of the CNN architecture used in the task is provided

below.

The input layer is intended to receive RGB images with

specified dimensions (e.g., 32x32x3 or 64x64x3), which

represent the pixel values of traffic signs. The visuals are

adjusted to increase training stability. The model's first layer

is a convolutional layer that extracts low-level information

such as edges and textures using many convolutional filters

(or kernels), which are typically 3x3. The number of filters

increases steadily in deeper levels to capture increasingly

complicated patterns, beginning with 32 filters and doubling

in successive layers (e.g., 64, 128).

Each convolutional layer is followed by a Rectified Linear

Unit (ReLU) activation function, which adds nonlinearity to

the network and allows the model to learn more complicated

representations. Max-pooling layers are used after

convolutional layer groups to reduce the spatial dimensions

of feature maps, hence lowering computational complexity

while keeping significant information. Pooling also gives

translational invariance, which is important for traffic sign

https://www.irjweb.com/current_issue.php

© 2024, IRJEdT Volume: 06 Issue: 12 | Dec-2024 Page 1248

International Research Journal of Education and Technology

Peer Reviewed Journal

ISSN 2581-7795

identification because signs might appear in several

orientations.

To avoid overfitting, dropout layers are used, in which a

percentage (e.g., 0.25 or 0.5) of neurons are randomly

removed during training. This prevents the model from

becoming overly reliant on specific traits and allows it to

generalize more effectively to new data sets.

Batch normalization is applied to normalize activations in

each layer, speeding up training convergence and stabilizing

the learning process.

Following a sequence of convolutional and pooling layers,

the network progresses to fully connected layers (also

known as dense layers), where high-level characteristics

retrieved from the convolutional layers are integrated to

perform classification. The final layer is a fully connected

layer with softmax activation that generates the probability

distribution for the 43 traffic sign classes in the German

Traffic Sign Recognition Benchmark (GTSRB) dataset. The

loss function is categorical cross-entropy, and the weights of

the network are adjusted during backpropagation using the

Adam optimizer.

This CNN architecture is intended to address the real-world

issues of traffic sign recognition, such as changing

illumination conditions, occlusions, and rotations, while

striking a balance between model complexity and

computing performance.

4. PREDICTIONS AND OUTCOMES

We monitored key performance indicators like accuracy,

precision, recall, F1 score, and confusion matrix outcomes

in order to assess the CNN model's performance. Strong

predictive performance across the 42 sign classes is

demonstrated by the model's overall accuracy of about

97.8% on the test dataset. The model consistently

recognized traffic signs with few false positives and false

negatives, as seen by the comparably high precision, recall,

and F1 scores. When taken as a whole, these metrics

demonstrate the model's strong generalization to unknown

data, which is crucial for real-world applications where the

system will come across a variety of sign images in various

settings.

To comprehend the model's learning process, we tracked its

accuracy and loss values during training and validation

across several epochs. Accuracy converged around epoch 10

in the training and validation accuracy plots, which

demonstrated a consistent rise. The training and validation

loss curves rapidly declined at the same time, suggesting

that the model was learning efficiently.

5. RESULTS

The model demonstrated great accuracy for the majority of

courses, accurately recognizing signs like "Speed Limit,"

"Yield," and "Stop" with nearly flawless precision. But

because certain signs' visual characteristics were identical,

the model had trouble in a few classifications. For instance,

circular warning signs or speed restriction signs with

varying number values may occasionally cause confusion

https://www.irjweb.com/current_issue.php

© 2024, IRJEdT Volume: 06 Issue: 12 | Dec-2024 Page 1249

International Research Journal of Education and Technology

Peer Reviewed Journal

ISSN 2581-7795

because they are similar in shape and color but differ only in

certain elements. We also saw patterns of misclassification

that might be further addressed by improving the model or

adding more preprocessing methods. We evaluated the

model's performance using a front-end application that let

users upload an image of a traffic sign, which the model

would subsequently categorize, in addition to numerical

findings.

With a simple interface that allowed users to upload an

image and get a forecast right away, the frontend was made

to be user-friendly. This feature not only illustrated the

model's capabilities but also showed how well it could be

integrated into real-time applications like driverless cars or

driver support systems. All things considered; the project's

outcomes highlight how well CNNs perform tasks involving

the recognition of traffic signs. The model exhibits potential

for real- world implementation due to its strong performance

and high accuracy rate on the GTRSB dataset. In order to

further improve model resilience, future developments

might experiment with more sophisticated designs to

address misclassifications in particular classes or

incorporate data augmentation techniques.

for the extra authors.

6. REFRENCES

1. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep

Learning. MIT Press.

2. Simonyan, K., & Zisserman, A. (2015). Very deep
convolutional networks for large-scale image recognition.
Proceedings of the International Conference on Machine
Learning (ICML), 1-9.

3. Chien, A. (2020, March 10). Convolutional Neural Networks

and How They Work.

4. Medium. https://medium.com/@chien/convolutional-neural-
networks

5. German Traffic Sign Recognition Benchmark (GTSRB). (2019).
German Traffic Sign Recognition Benchmark Dataset [Data
set]. Available at: http://benchmark.ini.rub.de/

6. LeCun, Y., & Bengio, Y. (2015). Convolutional networks for

images, speech, and time- series. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 1-
9). IEEE.

7. Chollet, F. (2015). Keras (Version 2.4.3). https://keras.io

https://www.irjweb.com/current_issue.php
https://medium.com/%40chien/convolutional-neural-networks
https://medium.com/%40chien/convolutional-neural-networks
http://benchmark.ini.rub.de/
https://keras.io/

